41 research outputs found

    Selecting β-glucosidases to support cellulases in cellulose saccharification

    Get PDF
    BACKGROUND: Enzyme end-product inhibition is a major challenge in the hydrolysis of lignocellulose at a high dry matter consistency. β-glucosidases (BGs) hydrolyze cellobiose into two molecules of glucose, thereby relieving the product inhibition of cellobiohydrolases (CBHs). However, BG inhibition by glucose will eventually lead to the accumulation of cellobiose and the inhibition of CBHs. Therefore, the kinetic properties of candidate BGs must meet the requirements determined by both the kinetic properties of CBHs and the set-up of the hydrolysis process. RESULTS: The kinetics of cellobiose hydrolysis and glucose inhibition of thermostable BGs from Acremonium thermophilum (AtBG3) and Thermoascus aurantiacus (TaBG3) was studied and compared to Aspergillus sp. BG purified from Novozyme®188 (N188BG). The most efficient cellobiose hydrolysis was achieved with TaBG3, followed by AtBG3 and N188BG, whereas the enzyme most sensitive to glucose inhibition was AtBG3, followed by TaBG3 and N188BG. The use of higher temperatures had an advantage in both increasing the catalytic efficiency and relieving the product inhibition of the enzymes. Our data, together with data from a literature survey, revealed a trade-off between the strength of glucose inhibition and the affinity for cellobiose; therefore, glucose-tolerant BGs tend to have low specificity constants for cellobiose hydrolysis. However, although a high specificity constant is always an advantage, in separate hydrolysis and fermentation, the priority may be given to a higher tolerance to glucose inhibition. CONCLUSIONS: The specificity constant for cellobiose hydrolysis and the inhibition constant for glucose are the most important kinetic parameters in selecting BGs to support cellulases in cellulose hydrolysis

    The kinetics of cellulose enzymatic hydrolysis : Implications of the synergism between enzymes

    No full text
    The hydrolysis kinetics of bacterial cellulose and its derivatives by Trichoderma reesei cellulases was studied. The cellulose surface erosion model was introduced to explain the gradual and strong retardation of the rate of enzymatic hydrolysis of cellulose. This model identifies the decrease in apparent processivity of cellobiohydrolases during the hydrolysis as a major contributor to the decreased rates. Both enzyme-related (non-productive binding) and substrate-related (erosion of cellulose surface) processes contribute to the decrease in apparent processivity. Furthermore, the surface erosion model allows, in addition to conventional endo-exo synergism, the possibility for different modes of synergistic action between cellulases. The second mode of synergism operates in parallel with the conventional one and was found to be predominant in the hydrolysis of more crystalline celluloses and also in the synergistic action of two cellobiohydrolases. A mechanism of substrate inhibition in synergistic hydrolysis of bacterial cellulose was proposed whereby the inhibition is a result of surface dilution of reaction components (bound cellobiohydrolase and cellulose chain ends) at lower enzyme-to-substrate ratios. The inhibition of cellulases by the hydrolysis product, cellobiose, was found to be strongly dependent on the nature of the substrate. The hydrolysis of a low molecular weight model substrate, such as para-nitrophenyl cellobioside, by cellobiohydrolase I is strongly inhibited by cellobiose with a competitive inhibition constant around 20 ÎĽM, whereas the hydrolysis of cellulose is more resistant to inhibition with an apparent inhibition constant around 1.5 mM for cellobiose

    Human Chitotriosidase Is an Endo-Processive Enzyme

    Get PDF
    publishedVersio

    Multi-Mode Binding of Cellobiohydrolase Cel7A from <i>Trichoderma reesei</i> to Cellulose

    No full text
    <div><p>Enzymatic hydrolysis of recalcitrant polysaccharides like cellulose takes place on the solid-liquid interface. Therefore the adsorption of enzymes to the solid surface is a pre-requisite for catalysis. Here we used enzymatic activity measurements with fluorescent model-substrate 4-methyl-umbelliferyl-β-D-lactoside for sensitive monitoring of the binding of cellobiohydrolase <i>Tr</i>Cel7A from <i>Trichoderma reesei</i> to bacterial cellulose (BC). The binding at low nanomolar free <i>Tr</i>Cel7A concentrations was exclusively active site mediated and was consistent with Langmuir's one binding site model with <i>K</i><sub>d</sub> and <i>A</i><sub>max</sub> values of 2.9 nM and 126 nmol/g BC, respectively. This is the strongest binding observed with non-complexed cellulases and apparently represents the productive binding of <i>Tr</i>Cel7A to cellulose chain ends on the hydrophobic face of BC microfibril. With increasing free <i>Tr</i>Cel7A concentrations the isotherm gradually deviated from the Langmuir's one binding site model. This was caused by the increasing contribution of lower affinity binding modes that included both active site mediated binding and non-productive binding with active site free from cellulose chain. The binding of <i>Tr</i>Cel7A to BC was found to be only partially reversible. Furthermore, the isotherm was dependent on the concentration of BC with more efficient binding observed at lower BC concentrations. The phenomenon can be ascribed to the BC concentration dependent aggregation of BC microfibrils with concomitant reduction of specific surface area.</p></div
    corecore